skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Heist, Alexandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carboxylate anions of various chain lengths are important molecules for many applications such as CO2 reduction, membrane-based bioreactors, etc. Also, carboxylate anions are ubiquitous in biological molecules such as amino acids, fatty acids, etc. Therefore, understanding the transport behavior of carboxylates of different chain lengths in polymer materials is important both as a fundamental phenomenon but also for designing materials for applications. Here, we characterized transport behavior by measuring the permeability (P), and total partition coefficient (K) for a series of polymer membranes for four model carboxylate salts—sodium salts of formate (NaOFm), acetate (NaOAc), propionate (NaOPr), and butanoate (NaOBu)—at varied upstream salt concentrations (0.1–1 M) or a series of polyethylene glycol diacrylate (PEGDA)-based membranes with 1) varying pre-polymerization water content; 2) varying uncharged side chain comonomer (polyethylene glycol methacrylate, PEGMA), and 3) varying charged comonomer)2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS). Also, diffusivity values of the four salts through the membranes have been calculated based on the solution diffusion model equation (Pdouble bondK × D), experimentally obtained permeability, and total partition coefficients. For a majority of these membranes, NaOFm's permeability is much higher than the other three carboxylate salts (NaOAc, NaOPr, and NaOBu) seemingly due to the lower chain length and thereby smaller hydrated diameter. In terms of total partition coefficient, a size-based trend is not observed. For example, NaOBu's total partition coefficient (K) is generally the largest among the four, and at higher upstream salt concentrations (1 M), the values of the total partition coefficients of the four salts converge. From this we conclude that the carboxylate salt transport through these PEGDA-based non-porous dense membranes to be primarily driven by kinetics and not sorption. 
    more » « less